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1. Introduction

Supersymmetric models with nonanticommutative (NAC) deformations [fl] have recently
attracted a considerable interest. The main idea is that the odd superspace coordinates
6« and A% are not treated as strictly anticommuting anymore, but involve non-vanishing
anticommutators .1 In original Seiberg’s paper and in many subsequent works (see
e.g. [B, @ and references therein), the deformation is performed in Euclidean rather than
Minkowski space-time. The reason is that in Minkowski space it seems impossible to
preserve both supersymmetry and reality of the action after deformation, still retaining
simple properties of the corresponding x-product (e.g., associativity and nilpotency) [E]
As discussed in [[], Euclidean NAC theories are of interest in stringy perspectives.? An
interesting question is whether NAC theories are meaningful by themselves, leaving aside
the issue of their relationships with string theory. In other words — whether it is possible to
consistently define them in Minkowski space, introduce a Hamiltonian with real spectrum
and find a unitary evolution operator.

We argue that the answer to this question is positive. Our consideration is mostly based
on the analysis of an interesting 1-dimensional NAC model constructed in a recent paper
of Aldrovandi and Schaposnik [§. In that work, NAC deformations of the conventional
Witten’s supersymmetric quantum mechanics (SQM) model [E] were studied in the chiral
basis. In this case, the deformation operator commutes with the supercharge @, but does
not commute with Q. However, Aldrovandi and Schaposnik noticed the presence of the
second supercharge Q that commutes with the Hamiltonian. On the other hand, @ and
Q seem not to be Hermitian conjugate to each other and the deformed Hamiltonian also
seemingly lacks the Hermitian property.

In other words, the original Grassmann algebra of the odd coordinates is deformed into a Clifford
algebra.
2The stringy origin of such deformations [H] was actually the main motivation of their consideration

in [] (see also [ﬂ, E])



Our key observation is that, in spite of having a complex appearance, this Hamiltonian
is actually Hermitian in disguise. One can call it “crypto-Hermitian” (or “cryptoreal”).
It belongs to the class of Hamiltonians studied recently by Bender and collaborators [[I(]].
The simplest example is

P + 22

H = =— +iga®. (1.1)

In spite of the manifestly complex potential, it is possible to endow the Hamiltonian (D)
with a properly defined Hilbert space such that the spectrum of H is real. The clearest
way to see this is to observe the existence of the operator R such that the conjugated
Hamiltonian

H = eftHe ! (1.2)

is manifestly self-adjoint [[[T]]. The explicit form of R for the Hamiltonian ([.1) is?

2 64 20
R=yg <§p3 - x2p> ~g° (Epg’ + 5’ + dpa* — 6p> +0(¢%) . (1.3)
The rotated Hamiltonian is
2 2 4
3 1
= ]% + g2 <3p2x2 + % - 5) 0(g") . (1.4)

The (real) spectrum of H (and H) can be found to any order in g in the perturbation
theory, and also non-perturbatively.

We will see that in the case of the Aldrovandi-Schaposnik Hamiltonian, there also exists
the operator R making the Hamiltonian Hermitian. The rotated supercharges e®Qe~ and
ef! Qe are Hermitian-conjugated.

We start in section 2 by constructing the operator R for certain non-supersymmetric
Hamiltonians. In particular, we discuss holomorphic deformations (adding to the Hamil-
tonian a holomorphic function of a complex dynamic variable). In section 3, we present
the Aldrovandi-Schaposnik model, find the corresponding operator R, as well as the ro-
tated Hamiltonian and supercharges. Also we briefly consider a NAC deformation of the
SQM model with two sorts of chiral supermultiplets. In section 4, we discuss possible

generalizations to field theory.

2. Cryptoreality: some comments

e First, about the term “cryptoreality”. In the original papers [[(], the Hermiticity of
the Hamiltonian ([L.1)) and its relatives was deduced from a certain special symmetry
of this Hamiltonian, the P7-symmetry. Indeed, the Hamiltonian ([L.1) is invariant
with respect to the combination of the parity transformation (which changes the

3 Actually, what is written here is the Weyl symbol of the operator R. The expression for a contribution
to the quantum operator corresponding to a monomial ~ p"z™ in its Weyl symbol is a properly symmetrized
structure, px — (1/2)(pz + xp), x°p — (1/3)(2p + pz® + zpz) , etc.



sign of x) and the time reversal transformation (which changes ¢ to —i). The P7-
symmetry of the Hamiltonian might be a sufficient condition for the existence of the
operator R such that the conjugated Hamiltonian ([1.2) is manifestly Hermitian, but,
as we will see later, it is not a necessary condition. In ref. [[L]], the term “pseudo-
Hermiticity” was used. To our mind, however, there is nothing “pseudo” about it, the
Hamiltonian ([L.1)) is simply Hermitian (in the properly defined Hilbert space), but
its Hermiticity is hidden, not immediately obvious. That is why the term “crypto-
Hermiticity” (or “cryptoreality”) seems to us somewhat more appropriate.

The conjugation (|1.9) acts upon all operators including the operators p, . The Weyl
symbols of the transformed operators p’, 2" are

v = p+2igzp + ¢*(2p° — pa®) + -+
=z —ig(a? +2p%) — ¢*(a — 22p?) + - . (2.1)

One can actually obtain the expression ([.4) for the Weyl symbol of the rotated
Hamiltonian by simply expressing H in terms of p/, /. The commutator [p,z] is not
changed after conjugation, that means that the Moyal bracket {p’, '} p. is equal
to one. The Moyal bracket is defined as [

{A, B}y = 2sin [1< e o ﬂA(p,x)B(P,X) (2.2)

2\ OpdX  OPdz

p=P,x=X

The expansion starts with the Poisson bracket, but, generically, there are also higher
terms. In particular, {p’, 2’} . p. differs from {p’,2'} p.p. by the terms of order ~ g*
and higher. But that means that (R.1) is not a canonical transformation. And this
means that the classical dynamics of H(p, z) and H(p, 2") are different. The quantum
dynamics of the original and conjugated Hamiltonians is, however, the same.

One can rotate away not only imaginary pieces in the potential, but also other un-
friendly looking terms in the Hamiltonian. For example, one can consider the Hamil-
tonian

(2.3)

and conjugate it with the operator R coinciding with the expression in eq. ([[.)
multiplied by the factor —i. The conjugated Hamiltonian coincides with ([.4), with
the sign of g2 being reversed. The spectrum of the Hamiltonian (2-3) can be found
by the same token as for the Hamiltonian ([.T). Actually, an exact mapping relating
the system (R.3) to the system ([[.1)) exists. Indeed, for any eigenfunction ¥, (z) of
the Hamiltonian ([L.1)) with eigenvalue E,, the function ¥, (—iz) is an eigenfunction
of the Hamiltonian (R.3) with the eigenvalue —FE,,.

The appearance of complex values of x may be somewhat unusual, but it is actu-
ally an inherent feature of the crypto-Hermitian systems. The eigenfunctions of the
Hamiltonian are required to behave well (be not singular and die out for large abso-
lute values of the argument) in a certain domain in the complex z-plane that might or
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Figure 1: Wave functions for a) the Hamiltonian ([[.I) and b) Hamiltonian (R-3) asymptotically
die out in the dashed sectors.

might not include the real axis [[[0]. The relevant domains for the Hamiltonians ([L.1)
and (R.d) are shown in figure[l. One is rotated with respect to the other by the angle
/2.

Another unusual feature of the Hamiltonian (R.3) is the absence of the ground state -
the state with the lowest energy. In this case, the spectrum has an upper rather than
lower bound. But the overall sign of energy is in fact a matter of book-keeping. For
all physical purposes, the dynamics of the Hamiltonian ([.1)) in the region in figure fla
and the dynamics of the Hamiltonian (R.J) in the region in figure flb are equivalent.

Consider now the Hamiltonian
H =71+ zz+4 g2, (2.4)

Remarkably, by conjugating it with the operator
(-2 2.3
R = —ig|7mz" + 3T ) (2.5)

one can rotate away the cubic term in the potential without trace such that the
conjugated Hamiltonian H' = #'n’ + 7’2’ + ¢2'3 is simply 77+ Zz. Hence the spectrum
of the Hamiltonian (R.4) coincides with the spectrum of a 2-dimensional oscillator,
Epm = 1+n+m. The wave functions of the original Hamiltonian (.4)) are obtained
from the oscillator wave functions by conjugation ¥ = e ®WU. For example, the
ground state wave function is

3
Uy ~ exp{—%—zz}. (2.6)

It decays exponentially in the three sectors in the complex plane of z shown in figure f,
and the Hilbert space where the crypto-Hermitian Hamiltonian (R.4) is well defined
is formed by the functions sharing this property.



Figure 2: The same for the Hamiltonian (£.4).

By the same token, one can rotate away without trace any holomorphic term in the
potential. For example, for the Hamiltonian 77 + Zz + ¢2°, this is done with the

operator

4 8
R=—ig (wz4 + gfr?’zz + Bw5> .

Generally, the operator rotating away the term gz" in the potential has the form
Ry = —ignz"""fy <§) ;
with fn(r) satisfying the equation
1—r*(N=Dlfn+r(1+7)fy=1. (2.7)

When N is odd, the solution represents a polynomial. For even N, it is more com-
plicated. For example,
11472

fa(r) = 3 " arctanr + 1| . (2.8)

Cryptoreal Hamiltonians for the systems with continuum number of degrees of free-

dom also exist. Bender, Brody, and Jones found the proper conjugation operator for

the system described by the Lagrangian [[I(]

/1'2 ¢2
2

L= S0 5 —igs (2.9)

¢ is a real scalar field. In the lowest order in g, it is given by a nonlocal expression
R = [ [ [ axtvanyupomy + Neyaitypl (2.10)

where pyx are canonical momenta, px = —i0/0¢x , and the kernels Myy,, Nxy, have
a complicated, but explicit form.



We want to notice that the system of the complex scalar field ¢ with the interaction
Hamiltonian ~ ¢ is also cryptoreal, and the corresponding conjugation operator is
given, again, by the expression (R.10) with 7x = —id/0@x being substituted for py.
This operator rotates the interaction term away without trace by the same token as
the operator (P-J) rotates it away in the QM case.

Actually, the pattern is quite general. Any holomorphic interaction term can be en-
tirely rotated away simply because the proper conjugation operator R involves in this
case only the momentum operators 7y rather than 7y, and df = 0 for holomorphic
functions.

e Finally, let us reproduce here the arguments of [I(] displaying the reality of the
spectrum of a P7-symmetric Hamiltonian. The operator P7 commutes with the
Hamiltonian, and it is reasonable to assume that a basis of the states representing
the eigenstates of both P7 and H can be chosen.* Let ¥ be an eigenstate of both
PT and H,

PTU = AU, HU = EV . (2.11)

Applying the operator P7 to the second equality and using [P7,H] = 0 and
PT(EVY) = E*PT(¥), we conclude that E = E* Q.E.D. Note also that apply-
ing P7 to the first equality and using (P7)? = 1, one can show that A\* = 1 and

—iot/2

hence A = e¢'®. By going from ¥ to We ,one can set A =1.

The norm of some eigenstates may happen to be negative. However, this can be
mended [[L] if redefining inner product by including in its definition the action of the
“charge conjugation” operator C that commutes with both H and P7 and is defined
as

Cla,y) = D Un(x)Th(y) - (2.12)

The operator C is in fact closely related to the operator R rotating the Hamiltonian
to the manifestly Hermitian form, as discussed above,

C = e 2p, (2.13)

3. Aldrovandi-Schaposnik model

The simplest SQM model [[] involves a real supervariable

X(0,0,t) = x(t) + 0(t) +(t)0 + 00F(t) . (3.1)

The action is

S = — / dt d*0 E(DX)(DXH—V(X) : (3.2)

4Were PT a linear operator, it would be trivial, but P7 involves complex conjugation and is not linear.
Hence, the existence of such basis is, indeed, an assumption and the reasoning given here cannot be regarded
as a formal proof.



with the convention [ d?060 = 1. Here V(X) is the superpotential and D, D are covariant
derivatives. Bearing in mind the deformation coming soon, we will choose their left chiral
basis representation

0 (9 _ 0

Here t = 7—iA0 and 7 is the real time coordinate of the central basis. Asymmetry between
D and D makes the Lagrangian following from (B.2) complex,

IV (x) 02 ()

L = —izF —
1T p

——F+ F2+ iy +

b, (3.4)

but one can easily make it real, rewriting it in terms of F = F — ii and subtracting a total
derivative. This corresponds to going over to the central basis from the chiral one.
The deformation is introduced by postulating non-vanishing anticommutators

(6,6} =C, {6,0}=C, {0,6}=C. (3.5)
The deformed action involves star products,
S = _/dtd29 B(D*X)*(D*X)Jrv*(xﬂ, (3.6)
where
c o c C [ o 02
X+xY = - - — — = — X(1)Y (2 3.7
* eXp{ 2 00,00, 2 00,00, 2 <391092 * aalae)} LY E) 1:2( )

and V,(X) is obtained from V(X) =3 ¢, X" by substituting X? — X2 = X+ X, X? —
X3 = X % X x X, etc in its Taylor expansion. The star product in (B.6) just ensures the
Weyl ordering of any product of the # monomials such that

050-C Gx0-C oxi—00+
2 2 2’

C Geo—00+

)

| Q

in accordance with the basic relation (B.J). The star product is associative.
The component expression for the deformed Lagrangian is the same as in eq. (B.4),

with V' (x) being substituted by [L3, f]

- 1/2
V(z,F) = / déV(x + &ck), (3.8)
~1/2
where
*=C*-cC (3.9)

is the relevant deformation parameter.” If C' is conjugate to C and C is real, ¢2 is also
real. Note, however, that one may, generally speaking, lift the condition that 6 and @ are

5The relation (@) can be easily derived by keeping the term oc 64 in the products X', with using
associativity and the identity (60) x (09) = ¢?/4. Note the correct sign of ¢* in (@) as compared to the
wrong one in the definition of ¢* in [f].



conjugate to each other, in which case C,C and C can take arbitrary values. We still
require the reality of ¢®. The crypto-Hermiticity of the deformed Hamiltonian discussed
below is fulfilled under this condition.
In the simplest nontrivial case, V(X) = AX3/3,
~ )\_w?’ A2z F?

Vi, F) = = +=—. (3.10)

The corresponding canonical Hamiltonian is
2 ¥ 277
D Nol% 0°V -

H=—4i—p—— 3.11
with p = —iF. The deformed Lagrangian and Hamiltonian look inherently complex. Ob-
viously, the complexities now cannot be removed by simply going from the chiral to the
central basis.

In the chiral basis, the supercharges are represented by the following superspace dif-

ferential operators,

0 ~ 0 0
= — = —— — 20— . 3.12
=% @ a6~ "ot (8.12)
Note that the star product operator (B.7) still commutes with @ (in other words, the
Leibnitz rule Q x (X *Y) = (Q x* X) x Y + X x (Q x Y) still holds), but not with Q. That
means that the deformed action (B.6) is still invariant with respect to the supersymmetry
transformations generated by @, but not Q. The Q-invariance implies the existence of the

conserved Nother supercharge whose component phase space expression is simply

Q = Yp. (3.13)

As was observed in [f], there is another Grassmann-odd operator commuting with the
Hamiltonian. It reads

S - ov
= 21— | . .14
Q=1 (p + 2 aj}) (3.14)
The standard SUSY algebra

Q*=Q° =0, {Q, 0} =2H (3.15)

holds, but, naively, Q is not adjoint to Q and H is not Hermitian.
Let us show now that the Hamiltonian () is in fact cryptoreal. Consider for sim-
plicity only the case (B.10). We have,®

2

H = % +idpz? —iBp® — 22z | (3.16)

where 3 = Ac?/12.

5Note that this Hamiltonian is not P7-, but just 7-symmetric.



It is convenient to treat A and (8 on equal footing and to get rid of the complexities
~ ipx? and ~ ip? simultaneously. The operator R doing this job is
Az

R = — 3 + Bap? — 2XB2% ) + - -+, (3.17)

where the dots stand for the terms of the third and higher order in A and/or . The
conjugated Hamiltonian is

2

H=¢RHe R = % — 2 ) + %[A%‘* + 36%p1 + %)\6 +O(\3, 82,223, 06%) . (3.18)

It is Hermitian. The rotated supercharges are

Q = Qe = pfp — i\ — Bp?) + NG — PP -],
Q = P Qe = Glp +i(Aa? — Bp?) + Adap+ 35%° + -] (319)

We observe that they are still not adjoint to each other. To make them mutually adjoint
to the considered order in (3, A, one should add to the operator R one more term

R = R=R-28*p*y. (3.20)

It is easy to see that this modification does not change the rotated Hamiltonian in the
considered order, but ensures the rotated supercharges to be manifestly adjoint to each
other

Q= eRQe_R = o[p —i(A\x? — Bp®) + \Bzp + B + -],

Q= e"Qe = y[p+i(\z? — Bp*) + \3®p + B%p° + -+ ]. (3.21)

By construction, the operators Q,é and H satisfy the standard algebra (B.14). We see
that the requirement of the mutual adjointness of supercharges is to some extent more
fundamental than that of the Hermiticity of the Hamiltonian — the latter does not strictly
fix the rotation operator R while the former does.

One can be convinced, order by order in 3, A, that complexities in H can be successfully
rotated away also in higher orders (with simultaneously restoring the mutual conjugacy of
the supercharges), and this is also true for higher powers N > 3 in V(X) ~ X* and hence
for any analytic superpotential.”

As the last topic of this section, we shall consider NAC deformations of some other
N =1 SQM models.?

Besides the A/ = 1 multiplet with the off-shell content (1,2,1), there also exist chiral
N = 1 multiplets (2,2,0) and (0,2,2), having, correspondingly, even and odd overall
Grassmann parity. They are described, respectively, by the chiral superfields ®(f,6,t) and
U(4,0,t):

D=0 = d=z()+0x(t), DV=0 = V=uw(t)+0h()), (3.22)

"It would be worth being aware of the full analytic proof of this.
8We denote by A the number of complex supercharges.



where as before t = 7 — 00, z is a complex bosonic field, ¢ and w are complex fermionic
fields and h is a complex bosonic auxiliary field. It was shown in that the only NAC
deformation preserving the 1D chirality and anti-chirality corresponds to the choice C' =

C =c2=0,C#0in (BF). Then the action of @,
1 _ = . )
Se = — /dtd26 [ZDCI)DCI) —|—K(<I>,<I>)} = /dt <z’z—i— %XX +- ) ’ (3.23)

remains undeformed after replacing all products by the relevant x products [g].
Actually, the same is true for the action of ¥

Sg = — /dt d%0 Ew + 3OV — 50@] = /dt <%ww — %hﬁ + Bh + 6h> , (3.24)

where 3 is a complex constant. However, while considering mutual couplings of ¥ and
®, there arise new possibilities. Prior to switching on any deformation, such couplings
provide potential terms for the (2,2,0) multiplet which do not exist within the pure ®
system (the “potential” term K (®,®) in (B.23) produces only a Wess-Zumino type term
~ (22 — zz) +---.). In particular, one can consider the action

Sprp = — /dt d?0 ED@D@ + iw + 0V F(P) — eﬁlﬁ(@)} , (3.25)

which gives rise to a non-trivial scalar potential for z,Z upon eliminating the auxiliary
fields h,h by their equations of motion. For instance, choosing F = a + b® + d®?, one
obtains after elimination of h, h the following on-shell component action

Sorp = /dt [|z’:|2 + %()ZX + @w) + 4la + bz + dz%|? + Yukawa w, x Couplings] .(3.26)

Nevertheless, once again, the direct (anti)chirality-preserving deformation of (B.25) does
not yield nothing new. The reason is that the terms proportional to the deformation
constant C' either never appear (in the antiholomorphic part ~ W) or vanish after doing
the Berezin integral (in the holomorphic part ~ ¥ ).

There still exists an interesting mechanism of generating new potential terms via the
deformation. It is based on the observation that, while U2 = 0 because of the Grassmann
character of W, this nilpotency property is not longer valid for ¥ x ¥ and higher-order star
products. Indeed, we find

2
\I/*\I/:%hQ, \Il*(\I/*\IJ):%(th—i—th), \Il*(\I/*\IJ*\I/):%h4, ete. (3.27)

The star products of ¥ coincide with the ordinary ones and so are identically zero. Let us
then e.g. add to the Lagrangian in (B.2§), with F = a + bz as the simplest choice, the term
a1 0¥ x (¥ x ¥) . The bosonic part of the corresponding component Lagrangian is given by
the following expression

uC

h3. 3.28
5 (3.28)

1 - _ _
L:\2\2—Zhh—l—h(a—i—bz)—i—h(d—i—bé)—

,10,



Here we cannot longer treat h as a conjugate of h: both these fields should now be treated
as independent complex ones. Eliminating h by its equation of motion, we obtain

L = |2® + 4|a + bz|? — 32a,C(a + b2)*. (3.29)

The additional term is holomorphic; by the same token as in section 2 we conclude that
the corresponding term in the quantum Hamiltonian can be rotated away without trace!
So the modified system proves to be physically equivalent to the undeformed system (has
the same quantum spectrum) in spite of an apparent difference in their Lagrangians.

The star product deformation breaks a half of supersymmetries and the modified action
is manifestly invariant only under the holomorphic half of the original supersymmetry.
Since after rotation we reproduce the original system, the modified system should also
respect some additional hidden supersymmetry of the opposite holomorphy, like in the
(1,2,1) system of ref. [§] discussed above.

4. Field theories

The first example of an anticommutative deformation of a supersymmetric field theory was
considered in ref. [[l. Seiberg took the standard Wess-Zumino model

2 3
L= /d49 b + [/dze <% + %) —i—c.c] (4.1)

(where now [ d*6 (0°0,) = 1) and deformed it by introducing the nontrivial anticommu-
tator

{6%,0°% = CP, (4.2)
C*P = OB« in the assumption that all other (anti)commutators vanish,

(09,67} = {6°,0°) = (9%, 2] = 0%, %] = [zL,al) =0 . (4.3)

Note that this all was written in the chiral basis, xﬁ = :Uffntral +i00,0. In ref. [fl], the space
x,, was assumed to be Euclidean. We will work in Minkowski space, however, and will not
be scared by the appearance of complexities at intermediate steps. The Minkowski space
deformation ({.d), (£3) is analogous to the SQM deformation (B.5) with C = C =0.

The anticommutator (f£.3) introduces a constant self-dual tensor which explicitly breaks
Lorentz invariance. However, the deformed Lagrangian expressed in terms of the compo-
nent fields proves still to be Lorentz invariant. Indeed, it is easy to find that the kinetic
term [ d*0 ®® is undeformed and the only extra piece comes from

A 2 A 2 3 A 3
Aﬁzg/dﬁfb*cb*fb—g/dﬁfb :—gdetHCHF . (4.4)
It depends only on the scalar det|C| and is obviously Lorentz invariant. Adding the
usual terms F(mo + A¢?) + F(m¢ + A¢?) coming from superpotential and FF from the

— 11 —



kinetic term, and expressing F' and F via ¢ and ¢, we see that the undeformed potential
|m¢ + Ap?|? acquires an extra holomorphic contribution ~ (me + Aé?)3.

We have seen, however, that such a holomorphic deformation can be rotated away
without trace! In other words, the deformation ([.d) does not change the dynamics (the
spectrum of the Hamiltonian etc) of the Wess-Zumino model in Minkowski space.”

The final example is the deformed N' = 2 gauge theory [, [[4]. There exists in this
case a natural Lorentz invariant deformation [,

1
{9?7(9?} = Zjﬁaﬁ@j, (4.5)

i,j = 1,2.19 The Lagrangian of the deformed A/ = 2 supersymmetric U(1) theory is [ 4

L=Ly+Ly+La, (4.6)
£ =303 o+ T + 1G], @
Ly =i [\Iﬂa + %] (00) g On <1 EZ) , (4.8)
L= 70+ J07 (famfon + fonFom) (4.9
fmn = Om <%J¢_5A"> — Oy (%{M_&AQ : (4.10)

The Lagrangian (fl.6) was derived originally in Euclidean space. In Minkowski space,
it is clearly complex. Bearing in mind the previous discussion, it is natural to suggest,
however, that the corresponding Hamiltonian is cryptoreal. Leaving the issue of crypto-
reality of the full field theory Hamiltonian for future study, let us disregard the fermion
part of ([l.6]) and consider the 1D reduction of what is left. We will show that the resulting
quantum-mechanical model is cryptoreal and actually amounts to the free model. The
reduction goes as

—

and we obtain

1. 1=n 1 JYOY T ¢
LM — - Sy — __+ = _ A2 4.12
bos = 59913 U+ 702 2145 (4.12)
The corresponding canonical Hamiltonian, in the obvious notation, is as follows
N Pt P?
H=2PP+-PP+ZJ*— __ _9j242—— 4.13
2 37 (1+J9)2 O(1+ Jp)? (4.13)

9To avoid a misunderstanding, we would like to point out that even in Minkowski space, the fields ¢
and ¢ (as well as F and F) after deformation should be treated as complex fields which are not conjugate
to each other. The standard complex conjugacy requirements can be consistently imposed on the rotated
fields and their canonical momenta.

10The deformation parameter .J is related to the original one I [ﬂ] as J =41I.

- 12 —



Making the rotation

, J3P3 P
H =cfHe R, R=-1 AL 3‘]7,, (4.14)
31+ Jé 14+ J¢
we find that
_ 1 - o
H’:QPP+§PP, (4.15)

i.e. the deformation is rotated away without trace, like in the examples above, and our
quantum-mechanical system is reduced to the free one. In the full 4-dimensional case the
situation is more subtle due to the presence of the term ~ &, that vanished after reduc-
tion. Our simple 1D consideration shows that the corresponding dynamics in Minkowski
space is expected to be “almost trivial”. Nevertheless, we do not see reasons why the defor-
mation in this case can be entirely rotated away. Rather, the situation should be similar to
what we observed in the Aldrovandi-Schaposnik model. To get a deeper insight into these
issues, it would be instructive to analyze, from a similar point of view, the deformations
of the nonabelian A/ = 2 gauge theories [[j and the models involving hypermultiplets [[[F],
which are not free in the undeformed limit J = 0.

5. Discussion

Our main result is that NAC deformations of supersymmetric theories are well defined
not only in Euclidean, but also in Minkowski space. In spite of its unfriendly looking
complex appearance, the deformed theory can be endowed with a Hilbert space where the
Hamiltonian is Hermitian and its spectrum is real. In many cases (in particular in the case
of the deformed Wess-Zumino model considered in Seiberg’s original paper), the deformed
Hamiltonian is actually physically equivalent to the undeformed one. Extra contributions
stemming from nonanticommutativity have holomorphic structure and can be “rotated
away” without trace, as was explained in the text of the paper. For some other NAC
theories, the new Hamiltonian is not equivalent to the old one and deformation brings
about nontrivial changes in dynamics.

We discussed at length a one-dimensional SQM example due to Aldrovandi and Scha-
posnik. While going to 4D field theories, the requirement that Lorentz invariance is kept
after deformation dictates the undeformed theory to possess at least N’ = 2 supersymme-
try [see eq. ([.H)]. The Lagrangian of the deformed A = 2 gauge theory was constructed
before. We have not proven, but argued that it is cryptoreal (i.e. the Hamiltonian can be
made Hermitian) but is not equivalent to the undeformed Lagrangian. A thorough study
of this interesting question is a problem for the future.

Another interesting direction of study, not related to nonanticommutativity, but re-
lated to cryptoreality is the following. In ref. [[§], we constructed a gauge theory in six
dimensions which is superconformal at the classical level. It is renormalizable, and the
variant of the theory involving interaction with a hypermultiplet [17] is anomaly free [[L§].
However, this theory involves higher derivatives, which may in principle lead to the loss of
unitarity due to the presence of ghosts. In particular, the theory involves scalar fields D
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of canonical dimension 2 with the potential ~ D3. Naively, such a potential means vac-
uum instability and the associated loss of unitarity. We have seen, however, that the QM

3 can be meaningful since their Hamil-

models with the potentials V (z) ~ iz3 or V(z) ~ z
tonians can be made Hermitian. It is not excluded that this is also the case for certain

higher-derivative field theories and, in particular, for the models constructed in [[id, [[7].
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